Oncogenic K-ras confers SAHA resistance by up-regulating HDAC6 and c-myc expression
نویسندگان
چکیده
Histone deacetylase inhibitors (HDIs) represent a new class of anticancer drugs. Suberoylanilide hydroxamic acid (SAHA), the first HDI approved for the treatment of cutaneous T cell lymphoma (CTCL), is currently being tested in clinical trials for other cancers. However, SAHA has been ineffective against solid tumors in many clinical trials. A better understanding of molecular mechanisms of SAHA resistance may provide the basis for improved patient selection and the enhancement of clinical efficacy. Here we demonstrate that oncogenic K-ras contributes to SAHA resistance by upregulating HDAC6 and c-myc expression. We find that the high levels of HDAC6 expression are associated with activated K-ras mutant in colon cancer patients. And expressions of HDAC6 and c-myc are increased in fibroblasts transformed with activated K-ras. Surprisingly, we find that activated K-ras transformed cells are more resistant to SAHA inhibition on cell growth and anchorage-independent colony formation. We show that a K-ras inhibitor sensitizes K-ras mutated lung cancer cells to SAHA induced growth inhibition. We also find that mutant K-ras induces HDAC6 expression by a MAP kinase dependent pathway. Our study suggests that combined treatment with SAHA and K-ras inhibitors may represent an effective strategy to overcome SAHA resistance.
منابع مشابه
A modest reduction in c-myc expression has minimal effects on cell growth and apoptosis but dramatically reduces susceptibility to Ras and Raf transformation.
Dergulation of c-myc and mutation of ras genes is commonly found in many human tumors. Several lines of evidence indicate that c-Myc and oncogenic Ras cooperate in causing malignant transformation, but the mechanism of this cooperation is not understood. We set out to investigate the effect on transformation of a modest reduction in endogenous c-Myc expression, which was achieved using a c-myc ...
متن کاملFoxO3a confers cetuximab resistance in RAS wild-type metastatic colorectal cancer through c-Myc
Resistance to epidermal growth factor receptor (EGFR) targeted monoclonal antibody therapy represents a clinical challenge in patients suffered from RAS wild-type (WT) metastatic colorectal cancer (mCRC). However, the molecular mechanisms and key factors conferring this resistance are largely unknown. Forkhead transcription factors of the O class 3a (FoxO3a), an important regulator of cell surv...
متن کاملK-Ras and B-Raf oncogenes inhibit colon epithelial polarity establishment through up-regulation of c-myc
KRAS, BRAF, and PI3KCA are the most frequently mutated oncogenes in human colon cancer. To explore their effects on morphogenesis, we used the colon cancer-derived cell line Caco-2. When seeded in extracellular matrix, individual cells proliferate and generate hollow, polarized cysts. The expression of oncogenic phosphatidylinositol 3-kinase (PI3KCA H1047R) in Caco-2 has no effect, but K-Ras V1...
متن کاملA microenvironment-mediated c-Myc/miR-548m/HDAC6 amplification loop in non-Hodgkin B cell lymphomas.
A dynamic interaction occurs between the lymphoma cell and its microenvironment, with each profoundly influencing the behavior of the other. Here, using a clonogenic coculture growth system and a xenograft mouse model, we demonstrated that adhesion of mantle cell lymphoma (MCL) and other non-Hodgkin lymphoma cells to lymphoma stromal cells confers drug resistance, clonogenicity, and induction o...
متن کاملConstitutive CCND1/CDK2 Activity Substitutes for p53 Loss, or MYC or Oncogenic RAS Expression in the Transformation of Human Mammary Epithelial Cells
Cancer develops following the accumulation of genetic and epigenetic alterations that inactivate tumor suppressor genes and activate proto-oncogenes. Dysregulated cyclin-dependent kinase (CDK) activity has oncogenic potential in breast cancer due to its ability to inactivate key tumor suppressor networks and drive aberrant proliferation. Accumulation or over-expression of cyclin D1 (CCND1) occu...
متن کامل